User Stories

Integrating graph visualization in Oracle BI with Linkurious

September 6, 2016

Our partner Peak Indicators explains how to integrate graph visualization powered by Linkurious in Oracle Business Intelligence (Oracle BI).

Linkurious + Oracle BI

Oracle BI provides powerful, visually appealing analytics. It helps people explore new insights and make faster, more informed business decisions. Like other business intelligence, Oracle BI is particularly suited for the analysis of tabular data via histograms, bar charts, pie charts and other such analytical visualisations:

An Oracle BI dashboard.

Peak Indicators has worked on extending Oracle BI by integrating it with Linkurious to deliver new embedded graph visualisations.

Why Graph Visualisation?

Whilst BI tools are typically designed for analytical reporting (trends, patterns, comparisons etc), graph tools are specially designed to visualise the connections and relationships that exist within your data (the visualisations are made up of “nodes” and “edges”).

 

The combination of BI and graph technologies offers a great way to view any aggregated data and the underlying connections it contains at the same time, with the additional capability to explore and discover all the links between the various data entities.

The combination of both helps generate new insights as we will see in an example.

Example: analysis of compliance issues

Imagine a financial services company which is analysing training feedback for some of its mandatory training. Good training results mean better compliance and less risks for the company.

Analysing training course evaluation and compliance issues.

In the above scenario, Oracle BI is presenting the user with summarised trends of information with conditional formatting to highlight certain data exceptions. Here we can see an overview of how the training programs are performing.  There are 3 issues being highlighted:

 

  • Tony Cameron, a trainer, has received poor ratings
  • The Compliance training course has received poor ratings
  • There was a surge of compliance issues in March 2016

 

The first two issues are related to training delivery, whereas the compliance issues are related to business performance.   Are there any relationships between these seemingly separate issues that Oracle BI has highlighted?    Can we actually prove that poor training delivery can result in poor performance within the business?

 

This is where the Linkurious graph visualisations come in to play since we need to understand how all the various data entities are related to each other.   For example, in this instance the graph visualisation is showing the connections between:

 

  • the trainer (green)
  • the training delivery (purple)
  • the training attendees (brown)
  • the attendee’s resulting compliance issues (blue)
The connections between Cameron his students and the compliance issues.

So we can see that the trainer Tony Cameron, who received poor feedback ratings, is related to 8 compliance issues within the business.

 

Here is a screenshot of how it actually looks when embedded within Oracle BI:

Linkurious embedded in Oracle BI adds graph insights.

The analysis gets even more interesting when we add another trainer, Geoff Fraser, on to the visualisation.  Geoff has received much better ratings and we can see immediately that he is related to only 1 compliance issue in the business whereas Tony Cameron is related to 8!

So by using Linkurious we can deduce that improving the quality of our trainers could have a very real and positive impact on reducing the number of compliance issues!

Peak Indicators was able to quickly integrate graph visualization capabilities into Oracle Power BI using the Linkurious REST API,

Linkurious makes it easy to understand complex connections, allowing businesses to make smarter decisions. With its REST API you can add new capabilities to existing solutions like Oracle BI. Want to learn more? Contact us.

Subscribe to our newsletter

A spotlight on graph technology directly in your inbox.

TOP