Graph technology is an efficient way of managing big data and gaining insights from within datasets. A graph database (also called a graph DB) is the foundation of any graph technology application. Graphs make it possible to extract new insights from even the largest and most complex data.
This article explores all the basics about graph databases: what they are, how they work, and how they can be applied for any kind of organization that relies on connected data.
Graph database 101: how do they work?
A graph data model is a structure that consists of a set of nodes and edges. Edges are also called relationships. Each node represents an entity, such as a person, a bank account, an address - or any other piece of data. Each edge represents how two nodes are linked to each other, for example, person “a” owns bank account “b”. Nodes and edges can have properties: additional information associated with them. For instance, the name property of the person “a” is “John”.
A graph database is where nodes, edges, and properties are stored. In contrast to a traditional, table-based model, graph data is stored without a predefined model, making it highly flexible.
Graph query languages
Graph database query languages let you access the information within a graph database. A query language makes it possible - even easy - for a developer to manipulate graph data and ask specific questions (queries) about the network within a graph DB. Commonly used graph query languages include Gremlin, Cypher, and GQL.
Graph algorithms
Graph algorithms are sets of instructions of procedures designed to solve a problem or perform a task on a graph data structure. They can be applied to a graph database to analyze patterns and understand relationships. There are many, many different types of graph algorithms. You can read about some of the most common graph algorithms here.
Graph databases vs relational databases
What else differentiates a graph database from a relational database?
Relational Database Management Systems (RDBMS) are structured as tables with rows and columns. They are well suited for many use cases where data is consistent and not highly connected. They are very good for routine data analysis, for example, or fast operations at scale such as verifying that a transaction belongs to a valid customer.
They come with drawbacks, however. They perform poorly for relationship queries. Going from table to table via “joins” has an exponential computational cost, making this kind of operation impractically slow.
RDBMS also have low flexibility. They are hard to evolve, and it’s complex to manage relationships across tables. It tends to be difficult for RDBMS to adapt to domains with complex connected data.

The graph data model, on the other hand, is particularly well-suited to store and organize data where connections are as important as the data points. Connections are stored and indexed as first-class citizens, making it interesting for many applications, such as investigations of fraud and financial crimes, cybersecurity or terrorism analysis where relationships are essential information.
Some types of questions are particularly well suited for graphs: How are X and Y connected? What is X connected to? What is the role of X person in this network? The world's biggest companies have been relying on graphs for years now to answer these kinds of questions, with systems such as Google’s “Knowledge Graph”.
Some examples of the most popular graph databases today are Neo4j, Azure Cosmos DB, AWS Neptune, Memgraph, JanusGraph, RedisGraph, or Stardog.
Graph analytics and graph databases
How do you get insight from the data in your graph database? Graph analytics offers a valuable set of methods to gain insights from connected data. For example, there are many graph algorithms, derived from graph theory and social network analysis, that can be used to identify communities, to spot highly connected individuals or to understand flows of information through a network.
When should you use a graph database?
Graph databases have some key advantages over more traditional analytics models. They answer some of today’s most pressing data challenges, such as:
- Increasing amounts of data
- Organizations needing to use more data sources
- Evolving data structures
With graph technology, you can combine multi-dimensional data, including demographic, temporal, or geographic data. You can also combine internal and external data sources, for example. A graph database is able to aggregate data from multiple sources and formats into a single, comprehensive data model that can scale up to billions of nodes and edges.
By de-siloing data and offering a lot of flexibility, graphs enable you to extract insights that are hard to come by with other approaches.
What are common graph database use cases?
There are many use cases for graph databases. Some examples of applications where graph can be especially powerful are:
Anti-money laundering
A graph database can be used to model relationships between people and organizations to detect suspicious financial activity. By analyzing transaction patterns and network structures, a graph database can help financial institutions identify potential money laundering schemes and take appropriate action.
Anti-fraud
A graph database could be used to detect fraud by analyzing patterns of behavior and relationships between entities. A graph database can identify anomalous behavior and connections, helping organizations prevent and detect fraudulent activity.
Intelligence
By modeling relationships between people, organizations, and events, a graph database can deliver insights into complex networks. Patterns of communication, financial transactions, and other data can be used to help intelligence agencies understand and respond to threats.
Cybersecurity
Graph databases can model relationships between devices, users, and activity logs to detect and prevent cyberattacks by identifying patterns of behavior and potential vulnerabilities.
Medical research
Graph databases can be used to model relationships between genes, proteins, diseases, and other biological entities to understand the underlying causes of diseases and develop more effective therapies.
Public health
By modeling relationships between people, locations, and diseases, graph databases can help public health officials understand patterns of disease transmission to respond to outbreaks and prevent the spread of disease.
IT management
A graph database can model relationships between hardware, software, and users to analyze complex IT networks and identify potential points of failure, optimizing system performance and preventing downtime.
Supply chain management
Graph databases can model relationships between suppliers, products, and customers to analyze complex supply chain networks, identify potential bottlenecks, and optimize efficiency.
For many of these use cases, graph databases can be leveraged alongside machine learning, providing better analytical accuracy and deeper insights.
Graph database visualization
While the graph approach offers a unified data model, finding insights within the enormous volume of data remains a challenge for analysts. Using link analysis or a graph visualization tool like Linkurious Enterprise on top of a graph database enables you to search, analyze, and visualize your graph data.
Graph visualization - also called network visualization - enables you to identify key insights. It is also particularly useful in situations where end-users need to understand and identify complex connections, but do not have strong technical skills.
Linkurious Enterprise connects to a graph database, providing real-time access to your data. Styling and filtering capabilities reduce the noise, highlight key elements, and analyze the data faster. For organizations dealing with massive volumes of connected data, it helps:
- Reveal connections and patterns that were otherwise hidden in silos through a unified graph view of your data
- Remove the difficulty of tracking information scattered across tools and tables, letting you find hidden insights faster.
